0012: Integer to Roman

Problem Statement

Seven different symbols represent Roman numerals with the following values:

Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Roman numerals are formed by appending the conversions of decimal place values from highest to lowest. Converting a decimal place value into a Roman numeral has the following rules:

  • If the value does not start with 4 or 9, select the symbol of the maximal value that can be subtracted from the input, append that symbol to the result, subtract its value, and convert the remainder to a Roman numeral.
  • If the value starts with 4 or 9 use the subtractive form representing one symbol subtracted from the following symbol, for example, 4 is 1 (I) less than 5 (V): IV and 9 is 1 (I) less than 10 (X): IX. Only the following subtractive forms are used: 4 (IV), 9 (IX), 40 (XL), 90 (XC), 400 (CD) and 900 (CM).
  • Only powers of 10 (I, X, C, M) can be appended consecutively at most 3 times to represent multiples of 10. You cannot append 5 (V), 50 (L), or 500 (D) multiple times. If you need to append a symbol 4 times use the subtractive form.

Given an integer, convert it to a Roman numeral.

Example 1:

Input: num = 3749

Output: "MMMDCCXLIX"

Explanation:

3000 = MMM as 1000 (M) + 1000 (M) + 1000 (M)
 700 = DCC as 500 (D) + 100 (C) + 100 (C)
  40 = XL as 10 (X) less of 50 (L)
   9 = IX as 1 (I) less of 10 (X)
Note: 49 is not 1 (I) less of 50 (L) because the conversion is based on decimal places

Example 2:

Input: num = 58

Output: "LVIII"

Explanation:

50 = L
 8 = VIII

Example 3:

Input: num = 1994

Output: "MCMXCIV"

Explanation:

1000 = M
 900 = CM
  90 = XC
   4 = IV

Constraints:

  • 1 <= num <= 3999

Code Solution

class Solution:
    def intToRoman(self, num):
        
        keys = [
	        1000, 900, 500, 400, 100, 
	        90, 50, 40, 10, 9, 5, 4, 1
	    ]
        vals = [
	        'M', 'CM', 'D', 'CD', 'C', 
	        'XC', 'L', 'XL', 'X', 'IX', 
	        'V', 'IV', 'I'
	    ]
	    
        cache = dict(zip(keys, vals))
        
        ix = 0
        out = []
        while num:
            while num < keys[ix]:
                ix = ix + 1
            num = num - keys[ix]
            out.append(vals[ix])
        return "".join(out)