0015: 3Sum
Problem Statement
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
Code Solution
class Solution:
def threeSum(self, nums):
N = len(nums)
nums.sort()
res = []
for ix in range(N - 2):
if ix > 0 and nums[ix - 1] == nums[ix]:
continue
jx = 1 + ix
kx = N - 1
while jx < kx:
s = nums[ix] + nums[jx] + nums[kx]
if s < 0:
jx = jx + 1
elif s > 0:
kx = kx - 1
else:
res.append([
nums[ix],
nums[jx],
nums[kx]
])
while jx < kx and nums[kx] == nums[kx - 1]:
kx = kx - 1
kx = kx - 1
return res