0033: Search in Rotated Sorted Array
Problem Statement
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly left rotated at an unknown index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be left rotated by 3
indices and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1
Example 3:
Input: nums = [1], target = 0 Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
- All values of
nums
are unique. nums
is an ascending array that is possibly rotated.-104 <= target <= 104
Code Solution
class Solution:
def search(self, nums, target):
def bsearch(arr, lx, rx, target):
if lx <= rx:
mx = lx + (rx - lx) // 2
if int(arr[mx] < nums[0]) < target:
return bsearch(arr, mx + 1, rx, target)
else:
temp = bsearch(arr, lx, mx - 1, target)
if temp == -1:
return mx
return temp
return -1
ix = bsearch(nums, 0, len(nums) - 1, 0.5)
ix = ix % len(nums) if ix != -1 else 0
imap = lambda x: (x + ix) % len(nums)
N = len(nums)
def binsearch(arr, lx, rx, target):
if lx <= rx:
mx = lx + (rx - lx) // 2
if arr[imap(mx)] == target:
return imap(mx)
elif arr[imap(mx)] < target:
return binsearch(arr, mx + 1, rx, target)
else:
return binsearch(arr, lx, mx - 1, target)
return -1