0062: Unique Paths
Problem Statement
There is a robot on an m x n
grid. The robot is initially located at the top-left corner (i.e., grid[0][0]
). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]
). The robot can only move either down or right at any point in time.
Given the two integers m
and n
, return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The test cases are generated so that the answer will be less than or equal to 2 * 109
.
Example 1:

Input: m = 3, n = 7 Output: 28
Example 2:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Down -> Down 2. Down -> Down -> Right 3. Down -> Right -> Down
Constraints:
1 <= m, n <= 100
Code Solution
class Solution:
def uniquePaths(self, m, n):
@cache
def rec(rx, cx):
if rx == m - 1 and cx == n - 1: return 0
if rx == m - 1: return 1
if cx == n - 1: return 1
count = 0
count = count + rec(rx + 1, cx)
count = count + rec(rx, cx + 1)
return count
return rec(0, 0)