0300: Longest Increasing Subsequence
Problem Statement
Given an integer array nums
, return the length of the longest strictly increasing subsequence.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18] Output: 4 Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3] Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7] Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up: Can you come up with an algorithm that runs in O(n log(n))
time complexity?
Code Solution
class Solution:
def lengthOfLIS(self, nums):
N = len(nums)
# Maximum of below iterations:
# (sx + 1): [..., sx - 1] <sx> [sx + 1, ..., N - 1]
# (sx + 2): [..., sx - 1] <sx> [sx + 2, ..., N - 1]
# (sx + 3): .......................................
# (sx + N - 1): [..., sx - 1] <sx> [sx + N, ..., N - 1]
@cache
def rec(sx):
if sx == N:
return 0
cmax = 1
for ix in range(sx + 1, N, 1):
if nums[ix] > nums[sx]:
cmax = max(cmax, 1 + rec(ix))
return cmax
# Perform LIS starting from all indices:
return max([rec(ix) for ix in range(N)])