3404: Count Special Subsequences
Problem Statement
You are given an array nums
consisting of positive integers.
A special subsequence is defined as a subsequence of length 4, represented by indices (p, q, r, s)
, where p < q < r < s
. This subsequence must satisfy the following conditions:
nums[p] * nums[r] == nums[q] * nums[s]
- There must be at least one element between each pair of indices. In other words,
q - p > 1
,r - q > 1
ands - r > 1
.
Return the number of different special subsequences in nums
.
Example 1:
Input: nums = [1,2,3,4,3,6,1]
Output: 1
Explanation:
There is one special subsequence in nums
.
(p, q, r, s) = (0, 2, 4, 6)
:
<ul>
<li>This corresponds to elements <code>(1, 3, 3, 1)</code>.</li>
<li><code>nums[p] * nums[r] = nums[0] * nums[4] = 1 * 3 = 3</code></li>
<li><code>nums[q] * nums[s] = nums[2] * nums[6] = 3 * 1 = 3</code></li>
</ul>
</li>
Example 2:
Input: nums = [3,4,3,4,3,4,3,4]
Output: 3
Explanation:
There are three special subsequences in nums
.
(p, q, r, s) = (0, 2, 4, 6)
:
<ul>
<li>This corresponds to elements <code>(3, 3, 3, 3)</code>.</li>
<li><code>nums[p] * nums[r] = nums[0] * nums[4] = 3 * 3 = 9</code></li>
<li><code>nums[q] * nums[s] = nums[2] * nums[6] = 3 * 3 = 9</code></li>
</ul>
</li>
<li><code>(p, q, r, s) = (1, 3, 5, 7)</code>:
<ul>
<li>This corresponds to elements <code>(4, 4, 4, 4)</code>.</li>
<li><code>nums[p] * nums[r] = nums[1] * nums[5] = 4 * 4 = 16</code></li>
<li><code>nums[q] * nums[s] = nums[3] * nums[7] = 4 * 4 = 16</code></li>
</ul>
</li>
<li><code>(p, q, r, s) = (0, 2, 5, 7)</code>:
<ul>
<li>This corresponds to elements <code>(3, 3, 4, 4)</code>.</li>
<li><code>nums[p] * nums[r] = nums[0] * nums[5] = 3 * 4 = 12</code></li>
<li><code>nums[q] * nums[s] = nums[2] * nums[7] = 3 * 4 = 12</code></li>
</ul>
</li>
Constraints:
7 <= nums.length <= 1000
1 <= nums[i] <= 1000
Code Solution